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ABSTRACT: The linear viscoelastic (LVE) spectrum of a soft colloidal glass is accessed
with the aid of a time−concentration superposition (TCS) principle, which unveils the glassy
particle dynamics from in-cage rattling motion to out-of-cage relaxations over a broad
frequency range 10−13 rad/s < ω < 101 rad/s. Progressive dilution of a suspension of hairy
nanoparticles leading to increased intercenter distances is demonstrated to enable continuous
mapping of the structural relaxation for colloidal glasses. In contrast to existing empirical
approaches proposed to extend the rheological map of soft glassy materials, i.e., time−strain
superposition (TSS) and strain−rate frequency superposition (SRFS), TCS yields a LVE
master curve that satisfies the Kramers−Kronig relations which interrelate the dynamic
moduli for materials at equilibrium. The soft glassy rheology (SGR) model and literature data
further support the general validity of the TCS concept for soft glassy materials.

Under the influence of thermal forces alone, a moderately
concentrated suspension of particles of size a in an

equilibrium, unentangled polymeric fluid is able to explore all of
its configuration space in a time scale of the order λeq ≈ 6πηa3/
kBT set primarily by the bulk viscosity η of the polymer host. It
should be emphasized that this situation prevails even though
each individual particle in the suspension must continuously
escape temporary entrapments in short-lived cages defined by
the close proximity of their neighbors. Increasing the particle
concentration above a critical value drives the system to a
jammed state in which the particles are disordered on long
length scales; however, the cages are long-lived, and the particle
equilibration time diverges as does the overall suspension
viscosity.1−6 Softening the particles by tethering polymer chains
to their surface provides an effective means of lowering the
particle volume fraction at which the glass transition is
observed2,7 and of facilitating short-range adjustments of
individual particle positions (i.e., in-cage motions) that in
some cases allow even a jammed suspension of particles to
exhibit no/negligible evidence of aging.8 These relaxation
processes are analogous to so-called β-relaxations in molecular
and polymeric glasses and are readily evidenced by fast decay of
particle correlations in dynamic light scattering.4,5,9

Despite fundamental differences in glassy relaxation behav-
iors observed in colloidal glasses and molecular glass-forming
liquids,6,10−12 it has long been understood that glass formation
in model colloidal suspensions can provide insight into the
physics of molecular glasses.3,6,13 Linear viscoelasticity near the
glass transition has been investigated for a variety of soft
colloidal systems, such as polymerically stabilized par-
ticles,5,14−16 charged particles,17 colloidal star polymers,18−20

microgel particles,7,21,22 etc. Mode-coupling theory
(MCT)5,6,14,16,23−26 and soft glassy rheology (SGR)
theory1,27−30 have provided good frameworks for describing
glassy dynamics in these systems. It is now known that in

colloidal glasses the probability of escaping from the cage
depends on the extent of jamming or cage dimensions (number
of particles constraining the test particle), and the time required
for observing complete cage escape may be of geological time
scales.8 As a consequence, very little is known about the
mechanisms through which particles escape their cages or about
the processes whereby the rubber-like plateau seen in the linear
viscoelastic spectrum gives way to terminal relaxation.
Various empirical methods have been proposed in the recent

literature to access the terminal relaxation of soft glassy
materials. In an analogous manner to time−temperature
superposition (TTS),31,32 a time−strain superposition (TSS)
approach has for instance been used to create rheological maps
of suspension dynamics that cover unprecedented time
scales.8,33 In particular, by imposing an external perturbation
sufficiently large to overcome the energy barrier associated with
the caging it was shown that dynamic moduli measured over a
finite range of frequency and at different, large strain amplitudes
can be overlaid to form an approximately continuous time map
that captures the uncaging transition. A strain−rate frequency
superposition (SRFS) was proposed even earlier to create the
master curve by superposing dynamic moduli obtained in a
limited frequency range, yet at multiple fixed effective shear
rates γ ̇ (= γω).34,35 Because both TSS and SRFS access the
terminal regime in a driven material, the master curves thus
obtained violate the Kramers−Kronig relations which inter-
convert the storage (G′) and loss (G″) moduli for materials at
equilibrium. Additionally, SRFS was found to significantly
overestimate the rate of terminal relaxation for kinetically
arrested suspensions. Thus, the relevance of the information
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uncovered by these methods to the understanding of quiescent
glasses is debatable.36,37 Alternatively, a time−concentration or
time−composition superposition (TCS) principle has long
been used in conjunction with small-amplitude oscillatory shear
(SAOS) measurements to extend the rheological map for
entangled polymers,38−41 triblock copolymers,42 microgels,7

and particle suspensions,38,40,43 by overlying G′ and G″ data
measured at multiple concentrations, with respect to a
reference fluid state that may be chosen at any concentration.
In a previous publication we demonstrated that suspensions
with particle concentrations that bracket the liquid-to-glass
transition obey an analogous TCS superposition principle that
allows a complete master curve for their relaxation dynamics to
be constructed, providing access to in-cage glassy dynamics as
well as dynamics at the uncaging transition.38

In this Letter we study dynamics of a model soft colloidal
glass and elucidate the physics that produce TCS. By carefully
examining the TCS master curves in both frequency and time
domains and comparing the shift factors with expectations from
linear viscoelastic theories we find that TCS is a fundamental
characteristic of soft glasses. We show that with sufficient care
in experiment design it should always be possible to empirically
characterize the full relaxation spectrum of a jammed soft
colloidal glass. Indeed, because the suspension concentration
sets the interparticle spacing prior to jamming and also largely
determines the state of compression of tethered chains after
jamming, TCS in reality provides a way to sample different cage
energiesand hence cage-escape probabilitiesand as such is
a powerful, but heretofore essentially unexplored, analogue to
the TTS method for studying dynamics of complex fluids.
These points are made more concrete with the help of the SGR
model, where we show that any experimental design that allows
the cage strength of a soft glass to be systematically
manipulated can be used in conjunction with experiments in
the linear viscoelastic regime to recover the full relaxation
spectrum.
We study a model soft colloid consisting of SiO2 nano-

particles (LUDOX SM-30, Sigma-Aldrich) densely grafted with
polyethylene glycol (PEG) oligomers (∼1.2 chain/nm2; MPEG
≈ 550 g/mol). The average diameter of the uncoated silica
nanoparticles was determined to be 10 ± 2 nm from the form-
factor analysis of small-angle X-ray scattering (SAXS) intensity
profiles.30,44 The synthesis of the PEG-silica particles and
procedures for suspension preparation were reported pre-
viously.30,38 The suspending medium used here is a Newtonian
fluid, comprised of unentangled mPEG oligomers (methoxy
polyethylene glycol; MmPEG ≈ 350 g/mol) of similar chemistry
as the tethered PEG ligands. The suspending medium also has a
similar refractive index to silica, thereby reducing van der Waals
attractions between silica cores and preventing wholesale
aggregation, as revealed by our SAXS structure-factor
analyses.30,45 As already established in previous studies,30,45

these suspensions exhibit exceptional colloidal stability, and
even in the jammed state, their dynamic moduli are virtually
invariant with time (see Supporting Information). Character-
ization by low-stress creep experiments reveals a Newtonian
flow regime at low shear rates in the suspensions (Supporting
Information). These structural and rheological features are
understood to come from the reorientation of tethered PEG
ligands, which facilitates short-range particle motions, analo-
gous to arm retraction of colloidal star polymers.20

PEG-silica nanoparticle suspensions with a range of SiO2
core volume fractions (ϕc = 0.20−0.40) were subjected to

small-amplitude oscillatory shear (SAOS) using an Anton Paar
MCR 301 rheometer outfitted with cone-and-plate fixtures (10
mm diameter and 4° cone angle; 25 mm diameter and 1° cone
angle; 50 mm diameter and 1° cone angle). As shown in Figure
1, the frequency dependence of G′ and G″ reveals a clear

transition from a liquid state (G′ ∼ ω2 and G″ ∼ ω) to a glassy
state (G′ ∼ ω0) with increasing ϕc. The time scale of cage
escape, associated with the crossover frequency at which G′ =
G″, can be seen to increase by several orders of magnitude over
the concentration range. The rubbery plateau develops, and the
zero-shear-rate viscosity begins to rise very rapidly upon a
critical SiO2 core volume fraction ϕc* ≈ 0.33 (Supporting
Information), where particle crowding starts to restrict motion.
The critical core volume fraction identified above should

correspond to the liquid-to-glass transition ϕg ≈ 0.58 generally
reported for hard-sphere colloids,1−3,7 which interact as a result
of excluded volume. Thus, at ϕc* ≈ 0.33 the densely grafted
PEG corona increases the effective volume fraction of the silica
core and yields an apparent brush height H = 1.0 ± 0.2 nm,
where the relation ϕg = ϕc*(1 + H/a)3 is used.46 Near the
liquid-to-glass transition, the brush height is noted to be close
to half of the intersurface distance determined from SAXS (dss
=1.5 ± 0.1 nm; inset of Figure 2a), where the interparticle
distance dpp is estimated from the first interaction peak of the
structure factor using dpp ≈ 2π/q. The observation that the

Figure 1. Frequency dependence of G′ and G″ in a range of silica core
volume fractions from ϕc = 0.20 to 0.40 at 40 °C.
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brush height is comparable to the intersurface distance suggests
that not only are the particles well dispersed in the
concentrated suspensions, but also the tethered PEG chains
are confined and compressed. After the transition, the tethered
ligands begin to interpenetrate and impose long-lived
topological constraints on the cores, leading to jamming (or
kinetic arrest). The jammed structure can be broken down by
large-amplitude oscillatory shear (LAOS), when the imposed
stress/strain exceeds a critical value, as evidenced by a
pronounced maximum in the first harmonic of G″(γ)
(Supporting Information).46 The G″(γ) maximum indicates
liquid-like behavior and results from energy dissipation
associated with cage breakup.47

To further quantify the extent of jamming for the individual
suspensions shown in Figure 1, we retrieve the so-called noise
temperature x from the linear viscoelastic spectra in a fixed
frequency range of 0.01 to 1 rad/s, using the soft glassy
rheology (SGR) model prediction, G′ ∼ ωx−1 for 1 < x < 3,28 as
summarized in the inset of Figure 2b. In the SGR model, the
noise temperature can be thought of as the energy available for
a trapped particle to hop out of its cage formed by surrounding
particles. The inset shows that above the critical core volume
fraction ϕc* ≈ 0.33 the noise temperatures approach 1 because

G′ becomes virtually independent of frequency, suggestive of
complete jamming and the formation of a colloidal glass.
Additionally, as noted previously,38,48 the rubbery plateaus
saturate at a value close to the melt plateau modulus of
entangled poly(ethylene oxide) (PEO) polymers of the same
chemistry as the tethered PEG ligands (Ge,PEO ≈ 1.8 × 106 Pa at
80 °C).31 This suggests that the jamming results from the
highly interpenetrating, topologically constrained PEG ligands;
it is the short-range motion of these ligands that appears to
relax residual stresses and virtually eliminates aging of the
jammed materials.
The ratio of G′/G″ attains a high value of around 50 at the

highest suspension concentration (ϕc ≈ 0.40), and therefore
the elasticity completely dominates the suspension rheology.
These observations, all together, indicate that upon approach-
ing the concentration ϕc* ≈ 0.33 the PEG-silica nanoparticle
suspensions have approached a glassy state, but for short-range
in-cage rattling motions facilitated by the dynamics of the
tethered PEG ligands, motion of the particles is arrested.
The main results of this Letter are summarized in Figure 2a,

where a smooth linear viscoelastic (LVE) master curve is
created by horizontal and vertical shifting of the G′ and G″ data
sets displayed in Figure 1 (ϕc = 0.20−0.39), with respect to a
reference colloidal glass (ϕc = 0.40). The horizontal (aϕc

) and

vertical (bϕc
) shift factors are summarized in Figure 3 and will

be discussed shortly. The resultant TCS master curve in Figure
2a is by almost any measure remarkable in terms of its ability to
substantially extend the frequency range10−13 rad/s < ω <
101 rad/sover which the detailed relaxation dynamics of the
colloidal glass can be observed. Specifically, the LVE spectrum
clearly shows a transition from a rubbery plateau to a terminal
relaxation regime with decreased frequency (or increased
observation time).
In Figure 2a the nearly frequency-independent loss modulus

G″ in the rubbery plateau regime (10−2 rad/s < ω < 100 rad/s)
is thought to reflect the in-cage rattling motion (β-relaxation)
of the particles discussed previously, and the frequencies are
associated with the fundamental exploration time for in-cage
motion and as such may be analogous to the entanglement
Rouse time, τe, for long, entangled polymer chains constrained
to diffuse in a tube. After the crossover frequency (ωc ≈ 10−6.5

rad/s) the jammed particles escape the cages, and familiar

Figure 2. Time−concentration superposition (TCS) master curves
obtained, respectively, in the frequency (a) and time (b) domains for a
reference PEG-silica colloidal glass with ϕc = 0.40. Insets in (a) and
(b) show the concentration dependences of SAXS-determined
interparticle distance dpp and noise temperature x, respectively.

Figure 3. Concentration dependences of horizontal (aϕc
) and vertical

(bϕc
) shift factors for dynamic modulus G*(ω) and relaxation modulus

G(t) in Figure 2. Zero-shear-rate viscosity η0 is scaled by a factor α = 4
× 10−12 to superpose onto the values of aϕc

at low concentrations.
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scaling relationships G′ ∼ ω2 and G″ ∼ ω known for an
isotropic, equilibrium state of relaxed complex fluids are
recovered.6 This finding is consistent with the observation
that the zero-shear-rate viscosity η0 of the jammed suspensions
remains measurable using creep experiments at shear rates
smaller than 10−6 1/s (Supporting Information). The longest
material relaxation time, presumably the cage escape time τcage,
can be estimated from the reciprocal of the crossover frequency
ωc, and the estimate reveals the very large time scale required
for the colloidal glass to attain an equilibrium state, i.e., τcage ≈
106.5 s ≈ 36 days. τcage may also be estimated as the inverse of
the critical shear rate at which shear thinning commences in a
steady-shear creep measurement. This approach yields an
estimate for the apparent terminal relaxation time, τcage ≈ γċ

−1 ≈
12 days. The agreement is not exact, but shows that the
extraordinary slow particle dynamics revealed by the simple
TCS procedure are meaningful in understanding other
rheological behaviors of a jammed suspension.
Considering that all oscillatory shear experiments used to

create the master curve are performed in the linear viscoelastic
regime, we expect that the dynamic moduli G*(ω) = G′(ω) +
iG″(ω) should satisfy the Kramers−Kronig relations which
interconvert the real and imaginary parts of the stress response
to a harmonic excitation.47 On the basis of a good analytical fit
for either moduli (29 relaxation modes; not shown), we verify
in Figure 2a that it is able to predict the other using the
Kramers−Kronig relations (solid lines). The good agreement
confirms that the TCS master curve is the linear rheological
response of the colloidal glass. Similar rich dynamics of a glassy
suspension should be accessible from small-amplitude step-
strain experiments performed in the time domain. Figure 2b
reports a composite linear stress relaxation modulus G(t)
obtained using TCS on relaxation data obtained using the same
suspensions employed in the oscillatory shear experiments.
Fourier transformation of the resultant G(t) yields dynamic
moduli that compare favorably with the TCS master curve
(dashed lines). The agreement between the data in the time
and frequency domains is taken for granted for simple fluids in
the linear viscoelastic regime and can also be considered
additional justification for the use of TCS to map extended
relaxation dynamics for soft colloidal glasses. To assess the
generality of the approach we have applied TCS in a similar
manner to other soft materials, including entangled polymers,38

hairy particles,38 colloidal star polymers,19 and microgels;7

master curves obtained for a representative set of these
materials are provided as Supporting Information. We also
remark that, using the SGR model without taking into account
rheological aging phenomena,29 a theoretical TCS master curve
can be created in a similar fashion from the calculated G′ and
G″ data sets (at x = 1−3 in small increments) because the
transition to a glass can be brought about by increasing the cage
strength (see Supporting Information for additional details).
The horizontal (aϕc

) and vertical (bϕc
) shift factors used in

constructing the TCS master curves in Figures 2a (frequency
domain) and 2b (time domain) are summarized in Figure 3.
The arguments in the introduction justifying TCS imply that
the horizontal shift factor aϕc

is proportional to the terminal

relaxation time of the suspension, i.e., aϕc
∼ τcage. Thus, a

dramatic change of aϕc
near the glass transition (ϕc* ≈ 0.33) can

be considered a signal for an abrupt increase in the cage lifetime
and hence approach of the glassy state, where particles begin to
undergo kinetic arrest. We further expect the cage escape time

τcage to be related to the terminal viscosity by the formula, τcage
= η0/G∝′ . We also note that the high-frequency limit of G∞′ is at
best only weakly dependent on concentration, which means
that another scaling relationship should hold, i.e., aϕc

∼ τcage ∼
η0. This expectation is tested in Figure 3 where η0, shifted
vertically by a concentration-independent constant factor α, is
compared with aϕc

obtained from application of TCS in the
frequency and time domains. It is apparent that η0 changes
significantly near the liquid-to-glass transition and can be
overlaid with aϕc

over much of the concentration range studied.
The agreement is least good for the most concentrated
suspensions, where wall slip and other effects can compromise
the quality of the measured η0 in creep. However, even this
level of agreement is remarkable considering the large
differences in the measurement time scale. This is another
justification of the TCS principle for unveiling extremely slow
dynamics of soft colloidal glasses, whose long-time structural
relaxation can be mimicked from the suspension rheology of
diluted suspension with increasing intercenter distances.
Additionally, the scaling suggests that self-similar particle
dynamics exist in the suspensions as ϕc is increased.
Consistent with the horizontal shift factor, the vertical shift

factor bϕc
shown in the inset of Figure 3 shows a sudden change

upon the liquid-to-glass transition. Since bϕc
reflects the

variation of the strength of the particle networks (i.e., plateau
modulus) with particle concentration, the change is thought to
reflect an increase in the entanglement density produced by
more interdigitated ligands. Comparing the concentration
dependences of bϕc

and zero-shear-rate viscosity, we find that
over the particle concentration range investigated the plateau
modulus increases by as much as ∼15 times, whereas the
viscosity rises more than 10 decades, implying that the
compressed tethered chains have stronger impacts on dynamics
in comparison to rheological properties.
It is known that the transition toward a glass in suspensions

is driven by increasing the particle concentration. The TCS
concept is therefore analogous to the commonly used TTS, for
which at T > Tg the temperature-dependent shift factors are
generally described by the empirical William−Landel−Ferry
(WLF) equation.31 We therefore devise a WLF analogue for
analyzing the concentration-dependent shift factors (aϕc

)
required to construct the TCS master curve (see Supporting
Information for additional details). The analysis suggests a
similar linear (concentration) dependence of the free volume as
embedded in the original WLF equation until the suspensions
become jammed (i.e., ϕc* ≈ 0.33 as identified earlier), after
which the free volume is anticipated to approach zero faster
than predicted by the Doolittle equation, presumably as a result
of the interdigitation of tethered ligands and high loading of
hard silica cores.
In summary, considering PEG-silica nanoparticles as a model

soft colloidal system in which the soft corona facilitates density
fluctuations and short-range relaxation of the hard cores, we
find that a time−concentration superposition (TCS) principle
can be exploited to create a continuous map of the complete
dynamic response of soft colloidal glasses on time scales (t >
108 s) inaccessible from real-time experiments. The success of
the approach demonstrates that in colloidal glasses structural
relaxation from in-cage rattling motion to the subsequent out-
of-cage motion can be mimicked by progressively diluting the
material, leading to increased mean intercenter distances. In
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other words, the particles that have lost their spatial correlation
can act as diluents for unrelaxed particles. We also find that the
TCS concept seems valid for a variety of soft glassy materials
and is supported by the soft glassy rheology (SGR) model.
Unlike the existing time−strain superposition (TSS) and
strain−rate frequency superposition (SRFS) principles used
for constructing rheological maps using nonlinear oscillatory
data (i.e., out of equilibrium states), TCS allows access to a
master curve obeying the Kramers−Kronig relations and hence
provides a very powerful means of probing extremely slow
particle dynamics for soft glassy materials.
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